Chapter 2 part 4

Solving the equation $[a] 0 x=[1]$ in \mathbb{Z}_{n}
The set-up: $n>0$ is a fixed integer
$a \in \mathbb{Z}$ - an integer, 1 - number One.
To solve this equation is to find $x \in \mathbb{Z} n$ such that $[a] 0 x=[D]$ in \mathbb{Z}_{n}
An analysis of the equation is always available as soon as \mathbb{Z}_{n} is a finite set.
Examples $[3] \otimes x=[1]$ in \mathbb{Z}_{6} has no solutions:

$$
\left.\begin{array}{ll}
3 \cdot 0=0 & 3 \cdot 3=9=3 \\
3.1=3 & 3 \cdot 4=12=0 \\
3.2=6=0 & 3 \cdot 5=15=3
\end{array}\right] \text { in } \mathbb{k}_{6}
$$

$$
\begin{aligned}
& \quad[5] \odot x=[1] \text { in } \pi_{6} \\
& x=[5] \text { is a solution }
\end{aligned}
$$

$$
\begin{array}{ll}
5 \cdot 0=0 & 5 \cdot 3=15=3 \\
5 \cdot 1=5 & 5 \cdot 4=20=2 \\
5 \cdot 2=10=4 & 5 \cdot 5=25=1 \\
& 5 \cdot 5 \equiv 1(\bmod 6)
\end{array}
$$

